DAS was installed at the five-lodge Singita Grumeti reserve in March, using sensors to illuminate a key corridor for poachers intent on crossing to the neighboring Serengeti. Bailes calls the system a “revelation and a game-changer.” He said the “layered approach of technology and boots on the ground enables Singita Grumeti to significantly enhance its effectiveness in dealing with poaching.”

Part of the success is Vulcan’s holistic approach: Schmitt’s team developed the software and provided capital for equipment and  hardware, and they’ve also invested in training, technical input, support, setup, mentoring, and guidance. Though the partnership is just two months old, “the impact has been significant,” Bailes said.

The Elephant in the Room
According to Schmitt, DAS happened almost by accident. In January 2014, the Vulcan team had been dispatched to Kasane, Botswana, to help kick off the first pan-African elephant census in more than 40 years. “We had all of the best and most famous scientists that do wildlife research and census-taking come together, trying to address a common problem.”

The issue: how to survey hundreds of thousands of square miles in order to get an accurate idea as to how many elephants are still living and how many have died? Ultimately, the group decided to systematically fly in grid-like patterns over 17 African countries, carefully threading and weaving above the continent, photographing herds and carcasses, and counting the old-fashioned way.

There was talk of using drones, but the area’s scope was too large for the battery-powered devices, and researchers feared the technology wasn’t consistent enough. The situation was too urgent for any technological mishaps, Schmitt said.

In the end, his team came away with two major insights. First, the population of savannah elephants has declined by 30 percent in the last seven years, primarily due to ivory poaching. Second, having tons of data on elephant poaching is useless unless conservationists can make sense of it in real time. It’s precisely the type of nut that Schmitt and Allen live to crack.

  Software Saves the Day
Schmitt’s first instinct was to harness as much data as possible, casting a wide net across the African savannah. “But what a lot of [park managers] were telling us was that they were already overwhelmed by the information they had. They couldn’t use it effectively.” What they needed was a way to aggregate and visualize data. They needed software.

“All of the tools that are out there are designed for the military,” Schmitt said. “They’re very expensive, for highly trained individuals, and not suited to the wildlife and conservation domains.” Rangers were instead using a decades-old system.

Building DAS took about 12 months and the partnership of many on-the-ground organizations who gave feedback. Threats differ by location, it turns out: In Tanzania, wildlife snares and bush-meat hunters are a big problem, while ivory poaching is a more common issue in Kenya. Then there are less malicious issues, such as bush fires, or a cow that has wandered from a local farm to big game predators. 

Schmitt and his team designed a system capable of recognizing all these factors. Some can be reported by rangers over radio; others can be picked up by seismic sensors, satellites, drones, camera traps, and speed detectors.